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Universality in the Frenkel-Kontorova model with a cosh-type interaction
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We have studied a generalized Frenkel-Kontorova model with a cosh-type interaction. A distinctive feature
of the model is that the winding number of the last Kolmogorov-Arnold-Moser torus could deviate from the
golden mean value for a very large degree of nonlinearity. The singularity spectrum and the generalized fractal
dimension depend on the nonlinearity spectrum. However, the critical exponents of the gap in the phonon
spectrum, the correlation length, and the Peierls-Nabarro barrier are found to be the same as those found in the
standard and Toda Frenkel-Kontorova models. Our conclusions agree with previous findings.
[S1063-651%97)10004-9

PACS numbgs): 05.45:+hb, 64.70.Rh, 05.70.Jk

I. INTRODUCTION breakup of a KAM torus. It is very analogous to a phase
transition, and various critical exponents and questions of
The Frenkel-KontorovéFK) model[1,2] is a simple one- universality can be studied. A study of the exponents based
dimensional model used to study incommensurate structurem a renormalization theory was carried out by MacKay
appearing in many condensed-matter systems, such as On the other hand, multifractal properties and global uni-
charge-density waves, magnetic spirals, and adsorbed monweersality in the FK model had also been stud{&. The
layers[3]. These modulated structures arise as a result of thphase diagram of the FK model contains infinitely many
competition between two or more length scales. The FKiongues of commensurate phases separated by gaps of in-
model describes a chain of atoms connected by harmonicommensurate structures. The period of these structures is
springs subjected to an external sinusoidal potential. The padescribed by a devil's staircagPS) function when the pa-
tential energy of the system is given by rameters defining the model is varied.[B] it is shown that
the devil’s staircase constructed along the critical line, which
is the collection of critical pointg, for all irrational w, is a
multifractal. Various fractal dimensions were computed in
1 [6]
While interactions in some systems can be approximated
Herex; is the position of théth atom,y the natural length of by a harmonic potential as described in the standard FK
the spring, and the rescaled strength of the external poten-model, there are many physical systems in which the poten-
tial compared to that of the spring potential. Extensive studtial is far from harmonic. It is therefore of interest to inves-
ies of this model have been made since its introductiontigate local and global properties of FK models with nonlin-
However, in the earlier studies, the FK model was treated irear interactions. Ii7] a Toda-type FK model, in which the
the continuum approximation. Although the continuum ap-harmonic potential was replaced by a Toda potential, was
proximation, which leads to the sine-Gordon equation and itgonsidered. It is shown that all the local critical exponents of
soliton solutions, provides some quantitative understandinghe Toda FK model are the same as those in the standard FK
it is seriously inadequate and misses many essential featurgaodel. Hence they are in the same universality class. The
It was not until Aubry[4] reverted to the original discrete global properties obtained if7] cannot be compared with
version and made use of the Kolmogorov-Arnold-Moserthose in[6], since the DS if7] is constructed at the critical
(KAM) theorem that an entirely new approach to the FKgolden mean valud (wg), rather than along the critical
model was ushered in. In this approach, the connection béines as was the case [6].
tween the FK model and the so-called “standard map” is In this paper we study universality properties of a gener-
especially useful. alized FK model with an anharmonic cosh-type potential.
Aubry showed that when the mean distarfatso called The model is defined by the Hamiltoni&8]
winding numbey between successive atoms,
COS"(XH—l Xi 7’)_1}
(o

HIZ % (Xit1—Xi—y)%+ 2m)? (1—C05277Xi)]

T Xn—Xo
w=lim — (2

H=2 (02

n—o

is rational, the system is always pinned. Howeverpiis + (21)2 (1_0052")(‘)]’ @)
irrational, there exists a critic&l. such that whelk<<k., the

system is unpinned; yet whdo>k., the system becomes whereo is a nonlinearity parameter measuring the degree of
pinned. This transition, called by Aubfy] a “transition by = anharmonicity. Wherr tends to infinity, the cosh potential
breaking of analyticity,” is closely connected with the reverts to the harmonic forrstandard FK modgl as o de-
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FIG. 1. Phase diagram of the cosh FK model at the fourth Farey generation=fr0, 0.12, and 0.10.

creases, the potential becomes more and more nonlinear, aiitie phase diagram consists of commensurate and incom-
in the limit — 0, it becomes & potential. We will study the mensurate ground states in the parameter spakeaoid 7.
phase diagram, the multifractal properties, and the criticaFor any given rational winding numbes, there is a corre-
behaviors of the cosh FK model, foIIowing the procedures insponding commensurate aréﬁ'nold’s tongue in which o

[7]. However, unlike the standard and the Toda FK modelsjs constant. Between any two tongues there is a gap that
here a complication arises. In E(B), y appears with the contains incommensurate states as well as higher-order com-
term (X;. 1 —X;) in the exponent. This will make the bound- mensurate states.

aries of the phase diagram an implicit functionyénd the Biham and Mukame[6] have used the Farey tree con-
map dependent op. In Sec. II, multifractal properties of the struction to study the phase diagram. There dfe'2 1 ra-
model are presented for DS’s constructed along the criticalionals (hence tonguésin the nth Farey generation in the
line. Critical exponents are presented in Sec. Ill. Section Vinterval [0,1]. The most effective way to construct a phase

concludes the paper. diagram is to locate the boundaries of commensurate states.
For a given commensurate state- p/q, its left boundary is
Il. MULTIFRACTAL STRUCTURES determined by equating the energy of that tongue to the en-
) ergy of an incommensurate state in the immediate
A. Phase diagram left neighborhood of the tongueH(B;w,k,yg)

Following [7], we use both the gradient methpd] and =H(B;w.k,yg). Since they have the sarkandu, andw is
the Newton method9] to locate the periodic ground states. infinitely close tow, their energy should also be infinitely
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FIG. 2. Critical line of the cosh FK model far=1.0, 0.12, and 0.10.

close. In practical calculations, the incommensuratis ap- B. Critical line, devil's staircase, singularity spectrum,

proximated by a left neighboring tonge= p/q of a much and generalized dimension

higher order, i.e.q>q. The higher the order the better the  As already mentioned in the Introduction,dfis rational,

approximation. We found that using six orders higher than the system is always pinned. But whenis irrational, there

o gives very good accuracy. The right boundary is deterexists a criticalk, such that wherk<k., the system is un-

mined in a similar way. As mentioned before, the boundarypinned; and wherk>k., the system becomes pinned. The

VB cannot be given as an expncit function ﬁf k, , and CO”eqtion of Critical- -pOin!:Skc for all irrational @ (O<w

®, as in the standard and Toda-type FK mod@ls <1) is called the critical lin&;(w). It has been shown that
In Fig. 1 we show the phase diagrams at the fourth Fare@" the critical linek.(w), the frequency ratia as a function

; _ : of the parametey forms a devil's staircass]. This function
generation forr=1.0, 0.12, and 0.10, respectively. We €€ contains only steps, each of them representing a stable com-

fhensurate state. Magnification of any part of the cunat
tially the same as that for the standard FK model when \yithin a step will reprgoduce the Origig’aﬁcurve_ |

=1. However, for those phase diagrams corresponding t0 |n order to calculatek,(w), we use both the Greene
o<1, the widths of the gaps between tongues are widened afethod[10,11] and the phonon spectrum methidd®]. Here

k increases. In any case, the phase diagrams are symmettite Greene method provides a more accurate determination
abouty=3, as is the case in the standard FK model. of k. for a givenaw.
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FIG. 3. Devil's staircase of the cosh FK model for=1.0, 0.12, and 0.10. Staircases up to the ninth Farey generation are shown.

Figure 2 presents the critical lines for=1.0,0.12,0.10 Thusm; satisfies the normalization condition
and Fig. 3 shows the devil's staircases constructed along
these critical lines. We see that the two wings of the critical
lines are raised and the lowest and the highest steps in the
DS’s widen as the nonlinearity of the cosh potential in-
creasego becomes smaller » ] ") ) ] ]

We can study the multifractal properties of the DS’s byThe partition func't|onl." (q,7) of this multifractal in the
defining a fractal measure on the fradi@l13. Let us con- Nth Farey generation is then
sider a DS constructed up to tiéh Farey generation. The
corresponding complementary set of this staircase Had 2
pieces(gaps in the interval[0,1]. Denote byl; the width of
the ith piece, andm, the fractal measure defined to be the
difference between the winding numbers of two neighborin
steps:

Z mi=1. (5)

-1
2n q

rgn=3 -

(6)

gThe function7(q) can be obtained by equatiri§) to a finite
constantC, as were done ir}6,7]. However, in order to

1,2,....27 % (4) improve on convergence in our computation, we prefer here

M=~ I=
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TABLE |. Winding number o), Of the last KAM torus as a

1— function of the nonlinearity parameterand the natural interatomic
length y. The symbol (n) denotes the continued fraction
— 6=100,1.0 [0,1n,1,1,1...].
--06=0.12 o
""" 0=0.10 v 1.00 0.80 0.60 0.40 0.20 0.10
D 0.5} 1 0.10 @ @ (2) (3 (5 (9)
B : 020 (1) (1) @ 6 (5) ©)
] 0.30 @ @ (2) 2) (5 (9
N 040 (1) (D (L 2 (5) (9
o= —— = - 0.50 @ @ L (2 4 (9
"""""""""""" 1-(1) 11 11 1-(2 1-4& 19
0.60 1-{1) 1-(1) 1-(1) 1-(2) 1-(5) 1—(9)
0 0.70 =1 1—{1) 1-2 1-2 15 1-9
-50 0 50 0.80 =1 1-{1) 1-2 1-@ 15 1-9
q 0.90 (1) 1-(1) 1-(2) 1—(3) 1-(5) 1-(9)
FIG. 4. Generalized dimensioD, of the devil's staircase for 7(q)
=100, 1, 0.12, and 0.10. D,= . (10

to use the ratio trick13], according to which one considers
the ratio of the partition functions in different Farey genera-  \ye have calculated(a) and D, of the devil's staircase

tions: for different o values. The numerical results are shown in
Figs. 4 and 5. We find that far>1 theD, curve coincides,

r" g, _ @) as it should, with theD, curve in the standard FK model,
r'‘™(q,7) ' which we also computed by the same method. For this curve
we have the Hausdorff dimensidd,=0.8450.002, Ds,
The convergence increasesragicreases. We uset=9 in =0.28+0.01, andD _5,=0.96+0.01. Aso decreases, both
our calculations. Once(q) is obtained, we can compute its D, and D., decrease, whileD _., remains practically un-
derivative a(q) changed. For instance, far=0.10, we have D,=0.836
+0.002,D5,=0.21+0.01, andD _5,=0.97+0.01. One may
a(q)= d () ®) understand this as such. From Fig. 3 we see that de-
dq ' creases, it is the upper and lower steps that widen signifi-

cantly. These parts correspond to large From Eq.(6), we
The singularity spectruni(a) and the generalized dimen- see that it is7(q) with g>1 that are affected by these

sionD, can then be calculated: changes. In fact, increaseslincorresponding to these steps
force 7(q), and henc®, to decrease for largg according
f(a)=qa(q)—7(q), (99  to Eq.(6). Figure 5 shows the corresponding graphs of the
1 ' 0.5
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FIG. 6. Winding numberw,s as a function ofo and y
for 0.1<=0=<0.8 and 0.xvy=<0.5. The symbokn) denotes the
FIG. 5. Singularity spectruni(«) of the devil's staircase for continued fraction[0,1,n,1,1...]. For 0.5 y<1l,0p¢{w,0)=1
0=100, 1, 0.12, and 0.10. —wis(1—v,0).



UNIVERSALITY IN THE FRENKEL-KONTOROVA MODEL . ..

FIG. 7. Critical valuek.(wps) for the breaking up of the last

KAM torus as a function ofy at various values of.

singularity spectrunf(a). We see thaf («) increases for

«<0.75 and slightly decreases far>0.75.

Our results on thé®, andf(«) curves differ from those
obtained in[6] (cf. Figs. 8 and 9 in6]). For instance, the
generalized fractal dimensions obtained [ii] are Dsg
~0.30,D _5~1.1, andDy=0.87+0.02, which is said to be
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TABLE Il. Critical valuek (w,s) for the breaking up of the last
KAM torus as a function of the nonlinearity parameterand the
natural interatomic lengthy.

Y
o 0.1 0.30 0.50
0.10 420.3172 56.885 00 7.707 843
0.20 10.687 526 3.958 607 3 1.530696 5
1.00 1.0952139 1.0153871 0.976 385 35
100 0.971 647 50 0.97163974  0.97163588
10000 0.971 635 407 0.971 635407 0.971 635 407

the continuous KAM curves become Cantori. K&k, the
last rotational KAM curve corresponding to some winding
numberw g breaks up. One notes the presenceyadf this
map, in contrast to the standard case. As a relsuliepends
not only ong, but also ony. This is closely related to the
critical lines studied in Sec. 1l B. We have studied the depen-
dence of thaw,; andk, on o andy. k. is determined using
the Greene'’s residue criterigi0,11] for a given w,g;.

In Table | and Fig. 6 we show the value of thg, as a
function of y and 0. We observe thab,,/S are continued
fractions of the form(n)=[0,1,n,1,1,1...] (n=1,2,3...)
for 0<y=0.5. For largeo, n is equal to one, and as
decreasesn increases consecutively. There is a symmetry
Wpas( 7, 0) =1—w(1—v,0). Figure 7 shows plots of

equal within the numerical uncertainty to the Hausdorff di-kc(wlast) as function ofy for different . Table Il gives the

mension of the critical line of the circle mdp3]. We be-
lieve the discrepancy between our results and thobg]iles
in the empirical formulas introduced i6] to obtain a se-

quence oD {" to estimateD,, (cf. Fig. 5 of[6]).

Ill. CRITICAL BEHAVIORS

A. Map and critical point
We now discuss local universality in the cosh FK model.value. For record purposes, we also show in Fig. 8 plots

The equilibrium conditiordH/dx;=0 with the Hamiltonian

. }(le_xi_')’) . ’_<Xi_xi1_')’”
sinf ——— | —sinh ———
g g

sin2mx; =0.

3 is

g

2

If we define a conjugate variable=x;—x;_1, then Eq(11)
can be written as a map

|

Yiz1=o sinhi 1

This map reduces to the standard maprasecomes large.
Whenk is small, there are KAM curves in thefy) phase
space. Ak increases, these curves break up one by one, and

Yi—vy

270

Xi+1=Xi TVYi+1-

k
+ ——— sin2mx;

+ v,

values of critical points, for some values ofr and y. We
see that for larger, k. is independent ot and v, and ap-
proaches the same valkg=0.971 635 40... as for the stan-
dard map. The corresponding,; is also the same as that in
the standard map, namely,,s= wg and/or - wg, where
wG:(JE—l)/z is the golden mean number. But when
becomes smallk. increases, especially near the two ends
(vy=0,1). The wS also deviate from the golden mean

of k.(w) as a function of the winding numbes at fixed
values of y and o. We note the symmetnk.(w,vy,o)
=k.(1-w,1-y,0).

B. Critical exponents

At the critical pointk=k;, a “transition by breaking of
analyticity” occurs. The hull functiori4] describing the in-
commensurate structure undergoes a transition from an ana-
Iytic function to a nonanalytic function. Many physical quan-
tities [12,14] also undergo a transition &t. We will study
in our model the critical behaviors of three quantities,
namely, the phonon gap, the coherence length, and the
Peierls-Nabarro barrier.

1. Phonon gap

First consider the gap in the phonon spectril@. Con-
sider a small vibration of the atoms around their equilibrium
positions{x;}

X (1) =X+ €(t). (13
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FIG. 8. Critical valuek.(w) as a function of winding number of KAM torus at fixedand y.

Then the linearized equation of motion for small vibrations is given by

. FPH{x(1)}] .
Ei(t)‘f'z ij(t)—o, i=12,...0. (14
For the cosh FK model,
( Xi—Xi_1—
_Cosy{;” Cj=i-1
o
9*H Xis1—Xi— Xi—Xj_1—
=1 COSP{M +cos|‘(;17 +k cos2rx;, =i (15
aXian g o
Xiy1—Xi—
\ g

The Fourier transform in time of Eq. (14) gives
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FIG. 9. Gap in the phonon spectrufdg as a function ofk
—k; for o=7y=0.1 calculated from two systems with different
sizes. The upper one correspondsste 327/361 and the lower one

to w=2856/945.
"(Xi_xil_')’) "(Xi_xil_')’)
0=cosh ————|¢_;—|cosh ———
g
+k cos2rx;— Q2

(o

Xi+1= X~y
+cosl‘(; €
o

X; —X; —
+cosl‘(%'7)ei+l, i=12,...0. (16)

The phonon spectrurf();} is obtained by solving this
gXx q matrix equation16). The gap in the phonon spectrum
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FIG. 10. Lyapunov exponeng, as a function ok—k; for o
=+y=0.1. The upper curves correspondsete- 1385/1529 and the
lower one tow=3626/4003.
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FIG. 11. PN barrieHpy as a function ok—k, for o= y=0.1
calculated for a system witlh=3626/4003.

Q. is defined to be the lowest phonon frequency in the sys-
tem, Qg=min{Q;}. Fork<k., the ground state of the chain

is in a sliding mode and therefofe;=0. Ask>k., a gap

Q¢ in the phonon spectrum appears and the critical behavior
of Qg can be characterized by the expongritl2]

Qg(k)~(k—ke)*. 17

We have calculateg for values ofo ranging from 0.1 to
100 andy from 0.1 to 0.9. Despite the fact that in these
ranges ofo and vy, the phase diagram, values kf and
w)ast Change greatly, but remains unchanged. Our numeri-
cal estimate ofy is

y=1.02+0.01. (19)

A representative graph of the gap in the phonon spectrum
Q¢ as a function ofk—k; is shown in Fig. 9 foro=1vy
=0.1.

2. Coherence length

The coherence lengthmeasures the distance over which
a perturbationSx; propagates along the chain. An infinitesi-
mal displacemendx; at x; will cause a displacemerdlx; at
Xj, where

&(jwexq—|Xj—Xi|/§)5Xi. (19)

Equation(19) defines the correlation length of the ground
state. It can be showhl2] that ¢ is the inverse of the
Lyapunov exponent

= (20
o
One can calculate the Lyapunov exponent from the eigen-
value of the Jacobian matrix of mdf2).

In the sliding modek<k., é—«, since the chain can
slide freely under an infinitesimal displacing force. Hor
>k, the atoms are locked; is therefore finite and so is
v, . The exponenv describes the critical behavior of :
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YL(k)~(k=ke)". (21)  the multifractal structures and critical behaviors of the
model. Unlike the standard and the Toda FK models consid-

As in the case of, the values ofv for variouso and y we ered previously in the literature, in this model the natural

considered are all the same: interatomic lengthy, as well as the nonlinearity parameter
appears in the map constructed from the equation of equilib-
r=0.99+0.01. (22)  rium. As a result, both the critical valde. and the winding

number w,; Of the last broken up KAM curve depend not
In Fig. 10 we showy, as a function ofk—k. for o=1y only on o, but also ony. We found that whero>1, this
=0.1. model behaves essentially the same as the standard FK
model. As o decreases well beyond unity, the generalized
3. Peierls-Nabarro barrier fractal dimensionsD, and the singularity spectrur(a)

The Peierls-NabarréPN) barrier of the ground state is change significantly: D, decreases appreciably for=0,
defined to be the minimal energy barrier that must be overWhile f(«) increases for smallr and slightly decreases for
come to continuously translate the chain of atoms on théargee. A distinctive feature of this model, very much unlike
external potential. Fok<k., the PN barrieHpy vanishes, the standard and the Toda models, is thatferl, the KAM
since no extra energy is needed to shift the chain in thigurves corresponding to the golden mean winding number
sliding mode. Fok>k., the ground state is described by a wg, or to 1-wg, are, in general, not the last ones to break
discontinuous hull function which in thex(y) phase space is up. Despite this fact, we find that the critical exponents of the
represented by a Cantor set. A minimizing periodic orbitgap in the phonon spectrum, the correlation length, and the
{(y; %) }{—, can be used to approximate this Cantor{4&].  Peierls-Nabarro barrier &.(w,s) at different values ofr
The PN barrierHpy is the energy difference between the and y are the same as those found in the standard and the

minimizing orbit and its companion minimax orbit Toda FK models. Hence these three systems belong to the
Ho —H H 23 same universality class.
PN= Hima( @) — Hpin( @), (23 It must, however, be emphasized that these three types of

interatomic potentials are all of theonvextype. When the
where Hpyaw) [Hpin(w)] is the energy of the minimax nonlinearity of the Toda and the cosh potentials increases,
(minimizing) orbit of winding numbetw. The critical behav-  the atomic configurations of the models are osyooth de-
ior of Hpy obeys the following power law formationsof the corresponding configurations in the stan-
Hon~(k—Ko)¥. (24) dard FK model. Hence, while the phase diagrams are de-
PN ¢ formed, there appears no new phase structure in Toda and
cosh FK models. Such is not the case for FK models with

The critical exponeni is found to be nonconvexpotentials, in which more complicated phase dia-

=3.00+0.02 (25) grams are possible. The universality properties of these non-
convex models require a more detailed study. Also, for non-
for all o andy values we have calculated. convex models, the numerical methods we employed here

Since all the critical exponents in the cosh FK model areare not guaranteed to yield a ground-state configuration. One
the same as those in the standard and the Toda FK modelsust make use of the method of effective potentials devel-
these three models belong to the same universality class imped by Griffiths and collaboratof46]. We hope to report
the conventional sense. The critical exponents satisfied thelsewhere on the results of our investigation of a nonconvex
scaling law[12] FK model with the Morse-type potentigl7].

Yy=2x+v. (26)

Figure 11 gives the PN barriétpy as a function ok—k_ for ACKNOWLEDGMENTS
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