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Universality in the Frenkel-Kontorova model with a cosh-type interaction
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We have studied a generalized Frenkel-Kontorova model with a cosh-type interaction. A distinctive feature
of the model is that the winding number of the last Kolmogorov-Arnold-Moser torus could deviate from the
golden mean value for a very large degree of nonlinearity. The singularity spectrum and the generalized fractal
dimension depend on the nonlinearity spectrum. However, the critical exponents of the gap in the phonon
spectrum, the correlation length, and the Peierls-Nabarro barrier are found to be the same as those found in the
standard and Toda Frenkel-Kontorova models. Our conclusions agree with previous findings.
@S1063-651X~97!10004-6#

PACS number~s!: 05.45.1b, 64.70.Rh, 05.70.Jk
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I. INTRODUCTION

The Frenkel-Kontorova~FK! model@1,2# is a simple one-
dimensional model used to study incommensurate struct
appearing in many condensed-matter systems, such
charge-density waves, magnetic spirals, and adsorbed m
layers@3#. These modulated structures arise as a result of
competition between two or more length scales. The
model describes a chain of atoms connected by harm
springs subjected to an external sinusoidal potential. The
tential energy of the system is given by

H5(
i

F12 ~xi112xi2g!21
k

~2p!2
~12cos2pxi !G .

~1!

Herexi is the position of thei th atom,g the natural length of
the spring, andk the rescaled strength of the external pote
tial compared to that of the spring potential. Extensive st
ies of this model have been made since its introducti
However, in the earlier studies, the FK model was treated
the continuum approximation. Although the continuum a
proximation, which leads to the sine-Gordon equation and
soliton solutions, provides some quantitative understand
it is seriously inadequate and misses many essential feat
It was not until Aubry@4# reverted to the original discret
version and made use of the Kolmogorov-Arnold-Mos
~KAM ! theorem that an entirely new approach to the
model was ushered in. In this approach, the connection
tween the FK model and the so-called ‘‘standard map’’
especially useful.

Aubry showed that when the mean distance~also called
winding number! between successive atoms,

v5 lim
n→`

xn2x0
n

, ~2!

is rational, the system is always pinned. However, ifv is
irrational, there exists a criticalkc such that whenk,kc , the
system is unpinned; yet whenk.kc , the system become
pinned. This transition, called by Aubry@4# a ‘‘transition by
breaking of analyticity,’’ is closely connected with th
551063-651X/97/55~5!/5092~10!/$10.00
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breakup of a KAM torus. It is very analogous to a pha
transition, and various critical exponents and questions
universality can be studied. A study of the exponents ba
on a renormalization theory was carried out by MacKay@5#.

On the other hand, multifractal properties and global u
versality in the FK model had also been studied@6#. The
phase diagram of the FK model contains infinitely ma
tongues of commensurate phases separated by gaps o
commensurate structures. The period of these structure
described by a devil’s staircase~DS! function when the pa-
rameters defining the model is varied. In@6# it is shown that
the devil’s staircase constructed along the critical line, wh
is the collection of critical pointskc for all irrationalv, is a
multifractal. Various fractal dimensions were computed
@6#.

While interactions in some systems can be approxima
by a harmonic potential as described in the standard
model, there are many physical systems in which the po
tial is far from harmonic. It is therefore of interest to inve
tigate local and global properties of FK models with nonli
ear interactions. In@7# a Toda-type FK model, in which the
harmonic potential was replaced by a Toda potential, w
considered. It is shown that all the local critical exponents
the Toda FK model are the same as those in the standard
model. Hence they are in the same universality class.
global properties obtained in@7# cannot be compared with
those in@6#, since the DS in@7# is constructed at the critica
golden mean valuekc(vG), rather than along the critica
lines as was the case in@6#.

In this paper we study universality properties of a gen
alized FK model with an anharmonic cosh-type potent
The model is defined by the Hamiltonian@8#

H5(
i

H s2FcoshS xi112xi2g

s D21G
1

k

~2p!2
~12cos2pxi !J , ~3!

wheres is a nonlinearity parameter measuring the degree
anharmonicity. Whens tends to infinity, the cosh potentia
reverts to the harmonic form~standard FK model!; ass de-
5092 © 1997 The American Physical Society
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FIG. 1. Phase diagram of the cosh FK model at the fourth Farey generation fors51.0, 0.12, and 0.10.
, a

ica
i

el

-

ic
IV

s.

om-

that
om-

n-

se
tes.

en-

y

creases, the potential becomes more and more nonlinear
in the limit s→0, it becomes ad potential. We will study the
phase diagram, the multifractal properties, and the crit
behaviors of the cosh FK model, following the procedures
@7#. However, unlike the standard and the Toda FK mod
here a complication arises. In Eq.~3!, g appears with the
term (xi112xi) in the exponent. This will make the bound
aries of the phase diagram an implicit function ofg and the
map dependent ong. In Sec. II, multifractal properties of the
model are presented for DS’s constructed along the crit
line. Critical exponents are presented in Sec. III. Section
concludes the paper.

II. MULTIFRACTAL STRUCTURES

A. Phase diagram

Following @7#, we use both the gradient method@4# and
the Newton method@9# to locate the periodic ground state
nd

l
n
s,

al

The phase diagram consists of commensurate and inc
mensurate ground states in the parameter space ofk andg.
For any given rational winding numberv, there is a corre-
sponding commensurate area~Arnold’s tongue! in which v
is constant. Between any two tongues there is a gap
contains incommensurate states as well as higher-order c
mensurate states.

Biham and Mukamel@6# have used the Farey tree co
struction to study the phase diagram. There are 2n2111 ra-
tionals ~hence tongues! in the nth Farey generation in the
interval @0,1#. The most effective way to construct a pha
diagram is to locate the boundaries of commensurate sta
For a given commensurate statev5p/q, its left boundary is
determined by equating the energy of that tongue to the
ergy of an incommensurate statev̄ in the immediate
left neighborhood of the tongue:H(b;v,k,gB)
5H(b;v̄,k,gB). Since they have the samek andm, andv̄ is
infinitely close tov, their energy should also be infinitel
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FIG. 2. Critical line of the cosh FK model fors51.0, 0.12, and 0.10.
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close. In practical calculations, the incommensuratev̄ is ap-
proximated by a left neighboring tonguev̄5 p̄/q̄ of a much
higher order, i.e.,q̄@q. The higher the order the better th
approximation. We found that usingv̄ six orders higher than
v gives very good accuracy. The right boundary is det
mined in a similar way. As mentioned before, the bound
gB cannot be given as an explicit function ofb, k, v, and
v̄, as in the standard and Toda-type FK models@7#.

In Fig. 1 we show the phase diagrams at the fourth Fa
generation fors51.0, 0.12, and 0.10, respectively. We s
that the phase diagrams for the cosh FK model are es
tially the same as that for the standard FK model whens
>1. However, for those phase diagrams corresponding
s!1, the widths of the gaps between tongues are widene
k increases. In any case, the phase diagrams are symm
aboutg5 1

2, as is the case in the standard FK model.
r-
y

y

n-
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B. Critical line, devil’s staircase, singularity spectrum,
and generalized dimension

As already mentioned in the Introduction, ifv is rational,
the system is always pinned. But whenv is irrational, there
exists a criticalkc such that whenk,kc , the system is un-
pinned; and whenk.kc , the system becomes pinned. Th
collection of critical pointskc for all irrational v (0,v
,1) is called the critical linekc(v). It has been shown tha
on the critical linekc(v), the frequency ratiov as a function
of the parameterg forms a devil’s staircase@6#. This function
contains only steps, each of them representing a stable c
mensurate state. Magnification of any part of the curve~not
within a step! will reproduce the original curve.

In order to calculatekc(v), we use both the Green
method@10,11# and the phonon spectrum method@12#. Here
the Greene method provides a more accurate determina
of kc for a givenv.
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FIG. 3. Devil’s staircase of the cosh FK model fors51.0, 0.12, and 0.10. Staircases up to the ninth Farey generation are show
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Figure 2 presents the critical lines fors51.0,0.12,0.10
and Fig. 3 shows the devil’s staircases constructed al
these critical lines. We see that the two wings of the criti
lines are raised and the lowest and the highest steps in
DS’s widen as the nonlinearity of the cosh potential
creases~s becomes smaller!.

We can study the multifractal properties of the DS’s
defining a fractal measure on the fractal@6,13#. Let us con-
sider a DS constructed up to thenth Farey generation. The
corresponding complementary set of this staircase has 2n21

pieces~gaps! in the interval@0,1#. Denote byl i the width of
the i th piece, andmi the fractal measure defined to be t
difference between the winding numbers of two neighbor
steps:

mi5v i112v i , i51,2,...,2n21. ~4!
g
l
he
-

g

Thusmi satisfies the normalization condition

(
i
mi51. ~5!

The partition functionG (n)(q,t) of this multifractal in the
nth Farey generation is then

G~n!~q,t!5 (
i51

2n21
mi
q

l i
t~q! . ~6!

The functiont(q) can be obtained by equating~6! to a finite
constantC, as were done in@6,7#. However, in order to
improve on convergence in our computation, we prefer h
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to use the ratio trick@13#, according to which one consider
the ratio of the partition functions in different Farey gene
tions:

G~n11!~q,t!

G~n!~q,t!
51. ~7!

The convergence increases asn increases. We usedn59 in
our calculations. Oncet(q) is obtained, we can compute it
derivativea(q)

a~q!5
d

dq
t~q!. ~8!

The singularity spectrumf (a) and the generalized dimen
sionDq can then be calculated:

f ~a!5qa~q!2t~q!, ~9!

FIG. 4. Generalized dimensionDq of the devil’s staircase for
s5100, 1, 0.12, and 0.10.

FIG. 5. Singularity spectrumf (a) of the devil’s staircase for
s5100, 1, 0.12, and 0.10.
-

Dq5
t~q!

q21
. ~10!

We have calculatedf (a) andDq of the devil’s staircase
for different s values. The numerical results are shown
Figs. 4 and 5. We find that fors.1 theDq curve coincides,
as it should, with theDq curve in the standard FK mode
which we also computed by the same method. For this cu
we have the Hausdorff dimensionD050.84560.002, D50
50.2860.01, andD25050.9660.01. Ass decreases, both
D0 and D` decrease, whileD2` remains practically un-
changed. For instance, fors50.10, we have D050.836
60.002,D5050.2160.01, andD25050.9760.01. One may
understand this as such. From Fig. 3 we see that ass de-
creases, it is the upper and lower steps that widen sig
cantly. These parts correspond to largemi . From Eq.~6!, we
see that it ist(q) with q@1 that are affected by thes
changes. In fact, increases inl i corresponding to these step
forcet(q), and henceDq , to decrease for largeq according
to Eq. ~6!. Figure 5 shows the corresponding graphs of

FIG. 6. Winding numberv last as a function ofs and g
for 0.1<s<0.8 and 0.1<g<0.5. The symbol̂ n& denotes the
continued fraction@0,1,n,1,1,...#. For 0.5<g<1,v last(v,s)51
2v last(12g,s).

TABLE I. Winding numberv last of the last KAM torus as a
function of the nonlinearity parameters and the natural interatomic
length g. The symbol ^n& denotes the continued fractio
@0,1,n,1,1,1,...#.

g

s

1.00 0.80 0.60 0.40 0.20 0.10

0.10 ^1& ^1& ^2& ^3& ^5& ^9&

0.20 ^1& ^1& ^2& ^3& ^5& ^9&

0.30 ^1& ^1& ^2& ^2& ^5& ^9&

0.40 ^1& ^1& ^1& ^2& ^5& ^9&

0.50 ^1& ^1& ^1& ^2& ^4& ^9&

12^1& 12^1& 12^1& 12^2& 12^4& 12^9&

0.60 12^1& 12^1& 12^1& 12^2& 12^5& 12^9&

0.70 12^1& 12^1& 12^2& 12^2& 12^5& 12^9&

0.80 12^1& 12^1& 12^2& 12^3& 12^5& 12^9&

0.90 12^1& 12^1& 12^2& 12^3& 12^5& 12^9&
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singularity spectrumf (a). We see thatf (a) increases for
a,0.75 and slightly decreases fora.0.75.

Our results on theDq and f (a) curves differ from those
obtained in@6# ~cf. Figs. 8 and 9 in@6#!. For instance, the
generalized fractal dimensions obtained in@6# are D50
'0.30,D250'1.1, andD050.8760.02, which is said to be
equal within the numerical uncertainty to the Hausdorff
mension of the critical line of the circle map@13#. We be-
lieve the discrepancy between our results and those in@6# lies
in the empirical formulas introduced in@6# to obtain a se-
quence ofD0

(n) to estimateD0 ~cf. Fig. 5 of @6#!.

III. CRITICAL BEHAVIORS

A. Map and critical point

We now discuss local universality in the cosh FK mod
The equilibrium condition]H/]xi50 with the Hamiltonian
~3! is

sFsinhS xi112xi2g

s D2sinhS xi2xi212g

s D G
2

k

2p
sin2pxi50. ~11!

If we define a conjugate variableyi[xi2xi21 , then Eq.~11!
can be written as a map

yi115s sinh21FsinhS yi2g

s D1
k

2ps
sin2pxi G1g,

xi115xi1yi11 . ~12!

This map reduces to the standard map ass becomes large
Whenk is small, there are KAM curves in the (x,y) phase
space. Ask increases, these curves break up one by one,

FIG. 7. Critical valuekc(v last) for the breaking up of the las
KAM torus as a function ofg at various values ofs.
-

.

nd

the continuous KAM curves become Cantori. Atk5kc the
last rotational KAM curve corresponding to some windin
numberv last breaks up. One notes the presence ofg in this
map, in contrast to the standard case. As a result,kc depends
not only ons, but also ong. This is closely related to the
critical lines studied in Sec. II B. We have studied the dep
dence of thev last andkc on s andg. kc is determined using
the Greene’s residue criterion@10,11# for a givenv last.

In Table I and Fig. 6 we show the value of thev last as a
function of g ands. We observe thatv last’s are continued
fractions of the form^n&[@0,1,n,1,1,1,...# (n51,2,3,...)
for 0,g<0.5. For larges, n is equal to one, and ass
decreases,n increases consecutively. There is a symme
v last(g,s)512v last(12g,s). Figure 7 shows plots of
kc(v last) as function ofg for differents. Table II gives the
values of critical pointskc for some values ofs andg. We
see that for larges, kc is independent ofs andg, and ap-
proaches the same valuekc50.971 635 40... as for the stan
dard map. The correspondingv last is also the same as that i
the standard map, namely,v last5vG and/or 12vG, where
vG5(A521)/2 is the golden mean number. But whens
becomes small,kc increases, especially near the two en
(g50,1). Thev last’s also deviate from the golden mea
value. For record purposes, we also show in Fig. 8 pl
of kc(v) as a function of the winding numberv at fixed
values of g and s. We note the symmetrykc(v,g,s)
5kc(12v,12g,s).

B. Critical exponents

At the critical pointk5kc , a ‘‘transition by breaking of
analyticity’’ occurs. The hull function@4# describing the in-
commensurate structure undergoes a transition from an
lytic function to a nonanalytic function. Many physical qua
tities @12,14# also undergo a transition atkc . We will study
in our model the critical behaviors of three quantitie
namely, the phonon gap, the coherence length, and
Peierls-Nabarro barrier.

1. Phonon gap

First consider the gap in the phonon spectrumVG . Con-
sider a small vibration of the atoms around their equilibriu
positions$xi%

xi~ t !5xi1e i~ t !. ~13!

TABLE II. Critical valuekc(v last) for the breaking up of the las
KAM torus as a function of the nonlinearity parameters and the
natural interatomic lengthg.

s

g

0.1 0.30 0.50

0.10 420.3172 56.885 00 7.707 843
0.20 10.687 526 3.958 607 3 1.530 696 5
1.00 1.095 213 9 1.015 387 1 0.976 385 35

100 0.971 647 50 0.971 639 74 0.971 635 88
10000 0.971 635 407 0.971 635 407 0.971 635 40
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Then the linearized equation of motion for small vibrations is given by

ë i~ t !1(
j

]2H@$xi~ t !%#

]xi~ t !]xj~ t !
e j~ t !50, i51,2,...,q. ~14!

For the cosh FK model,

]2H

]xi]xj
55

2coshS xi2xi212g

s D , j5 i21

coshS xi112xi2g

s D1coshS xi2xi212g

s D1k cos2pxi , j5 i

2coshS xi112xi2g

s D , j5 i11.

~15!

The Fourier transform in timet of Eq. ~14! gives

FIG. 8. Critical valuekc(v) as a function of winding number of KAM torus at fixeds andg.
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05coshS xi2xi212g

s D e i212FcoshS xi2xi212g

s D
1coshS xi112xi2g

s D1k cos2pxi2V2Ge i
1coshS xi112xi2g

s D e i11 , i51,2,...,q. ~16!

The phonon spectrum$V i% is obtained by solving this
q3q matrix equation~16!. The gap in the phonon spectru

FIG. 9. Gap in the phonon spectrumVG as a function ofk
2kc for s5g50.1 calculated from two systems with differen
sizes. The upper one corresponds tov5327/361 and the lower one
to v5856/945.

FIG. 10. Lyapunov exponentgL as a function ofk2kc for s
5g50.1. The upper curves corresponds tov51385/1529 and the
lower one tov53626/4003.
VG is defined to be the lowest phonon frequency in the s
tem,VG5min$Vi%. For k,kc , the ground state of the chai
is in a sliding mode and thereforeVG50. As k.kc , a gap
VG in the phonon spectrum appears and the critical beha
of VG can be characterized by the exponentx @12#

VG~k!;~k2kc!
x. ~17!

We have calculatedx for values ofs ranging from 0.1 to
100 andg from 0.1 to 0.9. Despite the fact that in thes
ranges ofs and g, the phase diagram, values ofkc and
v last change greatly, butx remains unchanged. Our numer
cal estimate ofx is

x51.0260.01. ~18!

A representative graph of the gap in the phonon spect
VG as a function ofk2kc is shown in Fig. 9 fors5g
50.1.

2. Coherence length

The coherence lengthj measures the distance over whic
a perturbationdxi propagates along the chain. An infinites
mal displacementdxi at xi will cause a displacementdxj at
xj , where

dxj;exp~2uxj2xi u/j!dxi . ~19!

Equation ~19! defines the correlation length of the groun
state. It can be shown@12# that j is the inverse of the
Lyapunov exponentgL

j5
1

gL
. ~20!

One can calculate the Lyapunov exponent from the eig
value of the Jacobian matrix of map~12!.

In the sliding mode,k,kc , j→`, since the chain can
slide freely under an infinitesimal displacing force. Fork
.kc , the atoms are locked,j is therefore finite and so is
gL . The exponentn describes the critical behavior ofgL :

FIG. 11. PN barrierHPN as a function ofk2kc for s5g50.1
calculated for a system withv53626/4003.
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gL~k!;~k2kc!
n. ~21!

As in the case ofx, the values ofn for variouss andg we
considered are all the same:

n50.9960.01. ~22!

In Fig. 10 we showgL as a function ofk2kc for s5g
50.1.

3. Peierls-Nabarro barrier

The Peierls-Nabarro~PN! barrier of the ground state i
defined to be the minimal energy barrier that must be ov
come to continuously translate the chain of atoms on
external potential. Fork,kc , the PN barrierHPN vanishes,
since no extra energy is needed to shift the chain in
sliding mode. Fork.kc , the ground state is described by
discontinuous hull function which in the (x,y) phase space is
represented by a Cantor set. A minimizing periodic or
$(yi ,xi)% i51

q can be used to approximate this Cantor set@15#.
The PN barrierHPN is the energy difference between th
minimizing orbit and its companion minimax orbit

HPN5Hmax~v!2Hmin~v!, ~23!

where Hmax(v) @Hmin(v)# is the energy of the minimax
~minimizing! orbit of winding numberv. The critical behav-
ior of HPN obeys the following power law

HPN;~k2kc!
c. ~24!

The critical exponentc is found to be

c53.0060.02 ~25!

for all s andg values we have calculated.
Since all the critical exponents in the cosh FK model

the same as those in the standard and the Toda FK mo
these three models belong to the same universality clas
the conventional sense. The critical exponents satisfied
scaling law@12#

c52x1n. ~26!

Figure 11 gives the PN barrierHPN as a function ofk2kc for
s5g50.1.

IV. SUMMARY

In this paper we have investigated a generalized
model with cosh-type interatomic action. We studied bo
on
r-
e

is

t

e
ls,
in
he

K
h

the multifractal structures and critical behaviors of t
model. Unlike the standard and the Toda FK models con
ered previously in the literature, in this model the natu
interatomic lengthg, as well as the nonlinearity parameters,
appears in the map constructed from the equation of equ
rium. As a result, both the critical valuekc and the winding
numberv last of the last broken up KAM curve depend no
only on s, but also ong. We found that whens@1, this
model behaves essentially the same as the standard
model. Ass decreases well beyond unity, the generaliz
fractal dimensionsDq and the singularity spectrumf (a)
change significantly: Dq decreases appreciably forq>0,
while f (a) increases for smalla and slightly decreases fo
largea. A distinctive feature of this model, very much unlik
the standard and the Toda models, is that fors,1, the KAM
curves corresponding to the golden mean winding num
vG, or to 12vG, are, in general, not the last ones to bre
up. Despite this fact, we find that the critical exponents of
gap in the phonon spectrum, the correlation length, and
Peierls-Nabarro barrier atkc(v last) at different values ofs
and g are the same as those found in the standard and
Toda FK models. Hence these three systems belong to
same universality class.

It must, however, be emphasized that these three type
interatomic potentials are all of theconvextype. When the
nonlinearity of the Toda and the cosh potentials increas
the atomic configurations of the models are onlysmooth de-
formationsof the corresponding configurations in the sta
dard FK model. Hence, while the phase diagrams are
formed, there appears no new phase structure in Toda
cosh FK models. Such is not the case for FK models w
nonconvexpotentials, in which more complicated phase d
grams are possible. The universality properties of these n
convex models require a more detailed study. Also, for n
convex models, the numerical methods we employed h
are not guaranteed to yield a ground-state configuration.
must make use of the method of effective potentials dev
oped by Griffiths and collaborators@16#. We hope to report
elsewhere on the results of our investigation of a noncon
FK model with the Morse-type potential@17#.
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